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SEPARATION SCIENCE, 5(4), pp. 429-436, August, 1970 

Mathematical Methods of 
Correcting Instrumental Spreading in GPC" 

L. H. TUNG 
PHYSICAL RESEARCH LABORATORY 

THE DOW CIIEMICAL COMPASY 
MIDLAND, MICHIGAN 48640 

Summary 

Various mathematical approaches to correct instrumental spreading in 
GPC are summarized. The basic equation describing the spreading cor- 
rection is identical to that used in X-ray diffraction for correcting its 
instrumental spreading. In GPC, however, artificial oscillation is easily 
induced in the solution of the basic equation. This difficulty is partially 
overcome by data smoothing procedures. 

INTRODUCTION 

Like any other type of chromatography, the GPC chromatogram of 
a monomeric compound appears as a curve of finite width as shown 
in Fig. 1. The position of the peak of the curve depends on the mole- 
cular weight of the compound; the area under the curve is proportional 
to the amount of the compound in the total sample; and the width 
of the curve depends on various band spreading mechanisms in the 
GPC instrument, both within and without the columns. For a poly- 
dispersed sample such as those normally encountered in high polymers, 
the chromatogram is a composite of the curves of all its components. 
The total area under the curve is still proportional to the amount of the 
entire sample but the height of the curve does not reflect the relative 
abundance of the components at the corresponding elution volumes, as 

* Presented at  the ACS Symposium on Gel Permeation Chromatography, 
sponsored by the Division of Petroleum Chemistry at  the 159th National Meet- 
ing of the American Chemical Society, Houston, Texas, February, 1970. 
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FIG. I .  Chromatogram of a monodisperse sample. 

it depends also on the abundance of the neighboring components. At  
the ends of the chromatograms there are curve portions representing 
components which do not even exist in the sample. For accurate molec- 
ular weight distribution analysis, this overlapping and diffused pat- 
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MATHEMATICAL METHODS IN GPC 431 

tern of the chromatogram must be corrected. Figure 2 shows the dif- 
ference between a corrected and uncorrected chromatogram. 

DERIVATION OF THE CORRECTION EQUATION 

Let us assume that for the moment the instrumental spreading 
function is Gaussian. Thus, the chromatogram of a monomeric com- 
pound has the shape of a Gaussian curve. Let f ( v )  denote the chro- 
matogram as a function of the elution volume (or count) v. For a 
monomeric compound then 

(1) f(v> = ~ ( h / & )  exp [-hz(v - v,>2] 

where vo is the elution volume a t  the peak, h is a parameter related 
to the width of the Gaussian curve, and A is the total area under the 
curve. For a multicomponent system 

j (v> = 1 A ~ W G )  exp [-h?(v - v,,)21 (2) 
I 

The area A ,  under the Gaussian curve is proportional to the amount 
of that Component in the sample. Thus, when the number of com- 
ponents in the sample becomes very large we may replace A ,  with a 
continuous function w ( y )  tha t  has a value a t  elution volume y pro- 
portional to  the amount of the component with its peak a t  y. Equation 
(2) becomes now 

f(v> = M?A(wa exp [ - h 2 ( v  - Y Y I  dy (3) 
The function w ( y )  is the chromatogram free from the effect of instru- 
mental spreading and therefore the unknown to be solved. If we let 
g (v-y) denote the instrumental spreading function in general then 

Equation (4) has the form of a convolution integral equation and is 
the same equation that describes the instrumental spreading correction 
in X-ray diffraction. 

f (v> = Sw(Y/)gb - Y> dy (4) 

METHODS OF SOLUTION 

There are apparently three different approaches used by GPC 
investigators in solving the above integral equation. 

1. Solution by Minimization 

Aside from the method of steepest descent in the function space 
used by Chang and Huang (I), other methods of minimization as 
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432 1. H. TUNG 

reported by Hess and Kratz (Z) ,  by Smith (S), by Pickett et al. ( 4 ) ,  
and by the author ( 5 )  all involved the approximation of eq. (4) by a 
set of linear algebraic equations in the following form. 

n - 
Equation ( 5 )  is for the jth equation. For each point on the chro- 
matogram an equation like Eq. ( 5 )  can be written. The unknown w 
function is now represented by n unknown points w ( y i )  spaced in 
suitable intervals (Ay) i apart. The products g j  (vj-yi) (Ay) i are known 
and they are the coefficients for the unknowns w (yi) . The unknowns can 
be solved by methods of minimization if we read from the chromato- 
gram a totlal number of points larger than n. 

Solution by way of linear algebraic equations has the flexibility of 
using any form for the g-function. The g-function can be made to 
vary with elution volume U. These methods, however, generally require 
large computer storage spaces and often long computation time. The 
computation for the method of Chang and Huang (1) was reported 
to be fast. 

2. Solution by Fourier Transform 

This is the approach used by Stokes ( 6 )  for the case of X-ray 
diffraction. Fierce and Armonas (7) have published an attractive 
simplification of this approach for GPC. The author (8) has also 
adopted Stoke’s method to GPC problems. 

The Fourier transforms for the three functions involved in Eq. (4) 
are: 

~ ( k )  = (l/d~r) 1 - 0 0  ID j (v)eikv dv 

~ ( k )  = (l/fir) 1 - 0 0  00 g(v)e%” dv 

(6) 

(7) 

The limits of integration in Eq. (4) can be extended to  +CO and 
-m even though both f(v) and w(y) have values of zero beyond the 
ends of the chromatogram. Then according t.0 the Faltung theorem 

W(k)  = (l/&r) [F(k ) /G  @)I (9) 
Since F ( k )  and G ( k )  can be computed from the given functions, 
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W ( k )  is now known. By the following inverse transform we may ob- 
tain the corrected chromatogram w ( v ) .  

w(v> = (l/&n-) 1 - m  O0 W(k)e-iDk dk 

The equations involved in this approach imply that a constant g- 
function with respect to v is required. But this inflexibility can be 
circumvented by treating the chromatogram one section a t  a time 
using the proper g-function for each section. 

3. Solution through Polynomial Representation of the Chromatogram 

Three published methods used this approach, one by Aldhouse and 
Stanford ( 9 )  and two by the author ( 5 , 8 ) .  

I n  general, the functions f ( v )  and w ( y )  for the chromatograms 
can be represented by polynomials. If the product of w ( y )  and g(v-y) 
is integrable, then by a comparison of the coefficients of f(v) with 
those of the polynomial after integration, the coefficients for w (y)  
may be solved. A convenient polynomial to  use is 

n 

j ( v >  = exp [ -q*(o - v,>21 2 ui(v - v,>i (11) 
i =O 

where q, 2ro, and Ui are adjustable parameters and coefficients. Be- 
cause of the exponential factor, the right-hand side of Eq. (11 )  ap- 
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FIG. 3. Pitting of a two-peak distribution by polynomials. 
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434 1. H. TUNG 

proaches zero when v approaches + 00 and --CO. The fit of Eq. (11) to  
a chromatogram is not difficult. Figure 3 shows the fit to a complex 
chromatogram. When n in Eq. (11) is 16, the curve calculated is in- 
distinguishable from the given chromatogram. 

I n  the polynomial approach the form of the g-function is more 
restrictive. The Gaussian function works well. Some asymmetrical g- 
function may also be used but it must be integrable when combined 
with w (y). 

Our current correction method uses a fourth-degree polynomial to 
correlate nine points on the chromatogram at a time. The g-function 
used is Gaussian. The procedure is repeated with every point on the 
chromatogram as the center point of the nine-point fit. In  this way 
the h parameter in the Gaussian g-function may be varied with the 
elution volume. The calculation on a computer for this scheme is 
extremely fast and uses a relatively small amount of storage spaces. 

The methods discussed so far all require high speed digital computers 
to execute the calculation. Frank, Ward, and Williams (IO), however, 
have described a simple method, the calculation for which may be 
managed by a desk calculator. From the chromatogram they separated 
one or several Gaussian curves, depending on the number of peaks in 
the chromatogram. The residual smooth function was lcft uncorrected. 
The Gaussian, peaks were narroxed by subtracting from them the 
instrumental spreading which was assumed to be also Gaussian. A 
similar approach has been used in our laboratory and proved to be 
very useful for the chromatograms of extremely narrow distribution 
samples. For these narrow distribution chromatograms the more 
complex method could be difficult to use because of the problem of 
oscillation. 

THE PROBLEM OF OSCILLATION 

Duerksen and Hamielec (11) have made a comparison of some of 
the above-mentioned methods. In  all methods examined by them some 
degree of oscillation induced by the computation was suspected. Figure 
4 shows a chromatogram f ( v )  calculated from a known w ( y )  function 
when the instrumental spreading g is relatively broad wit.h respect to 
w. It can be seen that a small variation in the slope of f ( v )  will bring 
about a considerable larger variation in the slope of w (y)  . This sensi- 
tivity of w (y)  varies with the breadth of the g-function or the extent of 
correction. In  the limiting case where there is no correction or g = 1, 
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FIG. 4. Relation between corrected chromatogram W(y)  and uncorrected 
chromatogram F ( v )  when the instrumental correction is large. 

w ( y )  becomes identical to f(v). In  any other cases variation of the 
slope for f ( v )  is always less than that for w ( y ) .  If in experiments f (  U )  
can be determined to  a high degree of precision and if the g-function 
used describes the spreading characteristics extremely accurately, 
then the solution for wry) can be obtained with a high degree of 
confidence regardless of the method used. In reality neither of the 
conditions can be fulfilled and as a result the uncertainties in f ( v )  and 
in g(v-y) are easily transformed into oscillations in w ( y ) .  This problem 
is more severe when the correction is large or when the sample con- 
tains very narrow peaks. It is also more pronounced a t  the ends of a 
chromatogram where the f(v) function is even less precisely known. 
T o  minimize the fluctuations in the raw data, mathematical cor- 
relations are used to smooth out f(v) before calculation. In  fact, in 
many of the above-mentioned methods such a data-smoothing proce- 
dure is implicitly or explicitly carried out in the computer program 
for the method. Whether one method of solution is better than another 
depends often more on this smoothing procedure than the mathematics 
involved. If smoothing is too drastically done, then some of the true 
features of w ( y )  may be lost; if not enough is accomplished, then 
oscillations may show up in the solution. It is not unusual that  a 
smoothing procedure is found to be sufficient for one chromatogram but 
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436 1. H. TUNG 

totally inadequate for another. Such a fact is perhaps the reason why 
in so short a time so many solutions were proposed for this one 
problem. No one is apparently completely satisfied with the correction 
method which he has on hand. 
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