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Mathematical Methods of
Correcting Instrumental Spreading in GPC*

L.H. TUNG

PHYSICAL RESEARCH LABORATORY
THE DOW CHEMICAL COMPANY
MIDLAND, MICHIGAN 48640

Summary

Various mathematical approaches to correct instrumental spreading in
GPC are summarized. The basic equation describing the spreading cor-
rection 1s identical to that used in X-ray diffraction for correcting its
instrumental spreading. In GPC, however, artificial oscillation is easily
induced in the solution of the basic equation. This difficulty is partially
overcome by data smoothing procedures.

INTRODUCTION

Like any other type of chromatography, the GPC chromatogram of
a monomeric compound appears as a curve of finite width as shown
in Fig. 1. The position of the peak of the curve depends on the mole-
cular weight of the compound; the area under the curve is proportional
to the amount of the compound in the total sample; and the width
of the curve depends on various band spreading mechanisms in the
GPC instrument, both within and without the columns. For a poly-
dispersed sample such as those normally encountered in high polymers,
the chromatogram is a composite of the curves of all its components.
The total area under the curve is still proportional to the amount of the
entire sample but the height of the curve does not reflect the relative
abundance of the components at the corresponding elution volumes, as

* Presented at the ACS Symposium on Gel Permeation Chromatography,
sponsored by the Division of Petroleum Chemistry at the 159th National Meet-
ing of the American Chemical Society, Houston, Texas, February, 1970.
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FIG. 1. Chromatogram of a monodisperse sample.

it depends also on the abundance of the neighboring components. At
the ends of the chromatograms there are curve portions representing
components which do not even exist in the sample. For accurate molec-
ular weight distribution analysis, this overlapping and diffused pat-
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FIG. 2. Comparison of an instrumental spreading corrected distribution
with an uncorrected distribution.
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tern of the chromatogram must be corrected. Figure 2 shows the dif-
ference between a corrected and uncorrected chromatogram.

DERIVATION OF THE CORRECTION EQUATION

Let us assume that for the moment the instrumental spreading
function is Gaussian. Thus, the chromatogram of a monomeric com-
pound has the shape of a Gaussian curve. Let f(v) denote the chro-
matogram as a function of the eclution volume (or count) v. For a
monomeric compound then

f@) = A(h/V/7) exp [— 120 — v5)Y] ®
where v, is the elution volume at the peak, h is a parameter related
to the width of the Gaussian curve, and A is the total arca under the
curve. For a multicomponent system

) = ZAi(h,-/x/a exp [— (v — v6:)?] @)

The arca A; under the Gaussian curve is proportional to the amount
of that component in the sample. Thus, when the number of com-
ponents in the sample becomes very large we may replace A; with a
continuous function w(y) that has a value at clution volume y pro-
portional to the amount of the component with its peak at y. Equation
(2) becomes now

F@) = [w(y)(h/~7) exp [—h*(v — y)2] dy 3)
The function w(y) is the chromatogram free from the effect of instru-
mental spreading and therefore the unknown to be solved. If we let
g(v-y) denote the instrumental spreading function in general then

f) = fw(y)glv — y) dy (4)
Equation (4) has the form of a convolution integral equation and is
the same equation that describes the instrumental spreading correction
in X-ray diffraction.

METHODS OF SOLUTION
There are apparently three different approaches used by GPC
investigators in solving the above integral equation.
1. Solution by Minimization

Aside from the method of steepest descent in the function space
used by Chang and Huang (1), other methods of minimization as
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reported by Hess and Kratz (2), by Smith (3), by Pickett et al. (4),
and by the author (5) all involved the approximation of eq. (4) by a
set of linear algebraic equations in the following form.

n

10 = Y wyde; — ¥ (8y)s (5)

1

Equation (5) is for the jth equation. For each point on the chro-
matogram an equation like Eq. (5) can be written. The unknown w
function is now represented by n unknown points w(y;) spaced in
suitable intervals (Ay); apart. The products g;(v;-y:) (Ay)}; are known
and they are the coefficients for the unknowns w (y;). The unknowns can
be solved by methods of minimization if we read from the chromato-
gram a total number of points larger than n.

Solution by way of linear algebraic equations has the flexibility of
using any form for the g-function. The g-function can be made to
vary with elution volume v. These methods, however, generally require
large computer storage spaces and often long computation time. The
computation for the method of Chang and Huang (I) was reported
to be fast.

2. Solution by Fourier Transform

This is the approach used by Stokes (6) for the case of X-ray
diffraction. Pierce and Armonas (7) have published an attractive
simplification of this approach for GPC. The author (8) has also
adopted Stoke’s method to GPC problems.

The Fourier transforms for the three functions involved in Eq. (4)
are:

F®) = (1/V30) [ f0e do ()
6 = (1/V20) [ gore dv )
W) = (1/V2n) [° we do ®

The limits of integration in Eq. (4) can be extended to + oo and
— oo even though both f(v) and w(y) have values of zero beyond the
ends of the chromatogram. Then according to the Faltung theorem

W) = (1/V20)[F (k)/G(K)] 9)

Since F(k) and G(k) can be computed from the given functions,
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W (k) is now known. By the following inverse transform we may ob-
tain the corrected chromatogram w(v).

w) = (1/V2n) [7 Wk dk (10)

The equations involved in this approach imply that a constant g-
function with respect to v is required. But this inflexibility can be
circumvented by treating the chromatogram one section at a time
using the proper g-function for each section.

3. Solution through Polynomial Representation of the Chromatogram

Three published methods used this approach, one by Aldhouse and
Stanford (9) and two by the author (5, 8).

In general, the functions f(v) and w(y) for the chromatograms
can be represented by polynomials. If the product of w(y) and g (v-y)
is integrable, then by a comparison of the coefficients of f(v) with
those of the polynomial after integration, the coefficients for w(y)
may be solved. A convenient polynomial to use is

1) = exp [=g*0 = 17 ) Uslo — 0,)* (11)
i=0

where g, v,, and U; are adjustable parameters and coefficients. Be-
cause of the exponential factor, the right-hand side of Eq. (11) ap-
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FIG. 3. Fitting of a two-peak distribution by polynomials.
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proaches zero when v approaches 4- o and — 0. The fit of Eq. (11) to
a chromatogram is not difficult. Figure 3 shows the fit to a complex
chromatogram. When #n in Eq. (11) is 16, the curve calculated is in-
distinguishable from the given chromatogram.

In the polynomial approach the form of the g-function is more
restrictive. The Gaussian function works well. Some asymmetrical g-
function may also be used but it must be integrable when combined
with w(y).

Our current correction method uses a fourth-degree polynomial to
correlate nine points on the chromatogram at a time. The g-function
used is Gaussian. The procedure is repeated with every point on the
chromatogram as the center point of the nine-point fit. In this way
the h parameter in the Gaussian g-function may be varied with the
elution volume. The calculation on a computer for this scheme is
extremely fast and uses a relatively small amount of storage spaces.

The methods discussed so far all require high speed digital computers
to execute the caleulation. Frank, Ward, and Williams (10), however,
have described a simple method, the calculation for which may be
managed by a desk calculator. From the chromatogram they separated
one or several Gaussian curves, depending on the number of peaks in
the chromatogram. The residual smooth function was left uncorrected.
The Gaussian- peaks were narrowed by subtracting from them the
instrumental spreading which was assumed to be also Gaussian. A
similar approach has been used in our laboratory and proved to be
very useful for the chromatograms of extremely narrow distribution
samples. For these narrow distribution chromatograms the more
complex method could be difficult to use because of the problem of
oscillation.

THE PROBLEM OF OSCILLATION

Duerksen and Hamielec (1) have made a comparison of some of
the above-mentioned methods. In all methods examined by them some
degree of oscillation induced by the computation was suspected. Figure
4 shows a chromatogram f(v) calculated from a known w(y) funetion
when the instrumental spreading g is relatively broad with respeet to
w. It can be seen that a small variation in the slope of f(v) will bring
about a considerable larger variation in the slope of w(y). This sensi-
tivity of w (y) varies with the breadth of the g-function or the extent of
correction. In the limiting case where there is no eorrection or ¢ = 1,
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FIG. 4. Relation between corrected chromatogram W (y) and uncorrected
chromatogram F(v) when the instrumental correction is large.

w(y) becomes identical to f(v). In any other cases variation of the
slope for f(v) is always less than that for w(y). If in experiments f(v)
can be determined to a high degree of precision and if the g-function
used describes the spreading characteristics extremely accurately,
then the solution for w(y) can be obtained with a high degree of
confidence regardless of the method used. In reality neither of the
conditions can be fulfilled and as a result the uncertainties in f(v) and
in g(v-y) are easily transformed into oscillations in w(y). This problem
is more severe when the correction is large or when the sample con-
tains very narrow peaks. It is also more pronounced at the ends of a
chromatogram where the f(v) function is even less preeisely known.
To minimize the fluctuations in the raw data, mathematical cor-
relations are used to smooth out f(v) before calculation. In fact, in
many of the above-mentioned methods such a data-smoothing proce-
dure is implicitly or explicitly carried out in the computer program
for the method. Whether one method of solution is better than another
depends often more on this smoothing procedure than the mathematics
involved. If smoothing is too drastically done, then some of the true
features of w(y) may be lost; if not enough is accomplished, then
oscillations may show up in the solution. It is not unusual that a
smoothing procedure is found to be sufficient for one chromatogram but
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totally inadequate for another. Such a fact is perhaps the reason why
in so short a time so many solutions were proposed for this one
problem. No one is apparently completely satisfied with the correction
method which he has on hand.
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